
High fidelity fiber orientation density functions from fiber ball 
imaging

Hunter G. Moss1,2, Jens H. Jensen1,2,3

1Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina

2Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina

3Department of Radiology and Radiological Science, Medical University of South Carolina, 
Charleston, South Carolina

Abstract

The fiber orientation density function (fODF) in white matter is a primary physical quantity 

that can be estimated with diffusion MRI. It has often been employed for fiber tracking and 

microstructural modeling. Requirements for the construction of high fidelity fODFs, in the sense 

of having good angular resolution, adequate data to avoid sampling errors, and minimal noise 

artifacts, are described for fODFs calculated with fiber ball imaging. A criterion is formulated for 

the number of diffusion encoding directions needed to achieve a given angular resolution. The 

advantages of using large b-values (≥6000 s/mm2) are also discussed. For the direct comparison of 

different fODFs, a method is developed for defining a local frame of reference tied to each voxel’s 

individual axonal structure. The Matusita anisotropy axonal is proposed as a scalar fODF measure 

for quantifying angular variability. Experimental results, obtained at 3 T from human volunteers, 

are used as illustrations.
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1 | INTRODUCTION

The geometrical arrangement of axon orientations inside a small region of white matter is 

described by the fiber orientation density (or distribution) function (fODF).1–3 Estimation 

of the fODF for individual imaging voxels is one of the more remarkable abilities of 

diffusion MRI (dMRI), providing a unique picture of the intricate details of brain tissue 

cytoarchitecture. Heretofore, fODFs have mainly been applied to support fiber tractography4 
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and microstructural modeling.5–8 In both cases, the fODF is essentially regarded as an input 

for the calculation of other physical quantities. However, as technical innovations lead to 

improving methods for measuring fODFs, it becomes natural to explore whether the fODF 

could itself be valuable as a direct window into cytoarchitectural changes associated with 

brain development, aging, and disease. Specifically, several open questions spring to mind. 

How variable are fODFs from a given brain region across individuals? How do fODFs 

change with age? How are fODFs affected by stroke, epilepsy, and Alzheimer’s disease?

To appreciate the information that the fODF provides, it is important to have a clear 

understanding of its physical meaning. One way to explain this is to imagine picking a 

water molecule at random from within the axoplasm of a given voxel, as illustrated in Figure 

1. Note that water within the myelin and extra-axonal water are not included. Then the fODF 

for this voxel is simply the probability density, F(u), of the axon that contains the water 

molecule being oriented in a direction u. If the axon is curved, then it is the orientation 

in the vicinity of the water molecule that counts. Thus the fODF is entirely determined by 

axon morphometry and could, at least in principle, be calculated from three-dimensional 

white matter histology. One caveat, however, is that it is not definitively known whether the 

fODF, as estimated with dMRI, includes both myelinated and unmyelinated axons, but some 

evidence does indicate that myelinated axons give the predominant contribution to the fODF 

for typical dMRI data acquisitions.9 A more precise mathematical definition of the fODF is 

given in Appendix A.

In order to obtain and utilize high fidelity fODF maps that support meaningful comparison 

of fODF structure across voxels and subjects, several issues need to be addressed. First, it is 

important that the angular resolution of the fODF maps be known so they can be properly 

interpreted. Second, criteria for choosing the number of diffusion encoding directions and 

the diffusion weighting are needed to avoid sampling errors and noise artifacts. Excessive 

sampling errors and signal noise degrade fODF maps and obscure the finer details of fODF 

structure. Third, fODFs should be plotted consistently in a local frame of reference that is 

determined by the fODF structure itself rather than in a global frame as is typically done. 

Global frames (eg the laboratory frame) are necessary for fiber tracking, but they confound 

the comparison of fODF structure since the appearance of fODF maps in global coordinates 

depends on both structure and spatial orientation. By using a local frame of reference, the 

effect of spatial orientation can be removed. Finally, quantitative methods for comparing 

fODFs across voxels and subjects are required to fully exploit the information they provide.

The goal of this paper is to address these issues in the context of fiber ball imaging 

(FBI), which is one approach for constructing fODFs.6,9,10 An advantage of FBI is that 

fODFs are calculated by simply applying a linear transform to the dMRI signal data from a 

single b-value shell without the need to introduce a global response function or numerical 

regularization. Nevertheless, much of the methodology proposed here is also applicable 

to other fODF approaches. Examples of high fidelity fODFs constructed from dMRI data 

obtained at 3 T are used to demonstrate the quality that can be achieved for various choices 

of imaging parameters.
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2 | METHODS

2.1 | Fiber ball imaging

The core equation that underpins FBI is that the fODF is approximately given by

F (u) = k
2S T F

−1 S u, bD0 , (1)

where S is the dMRI signal as a function of diffusion encoding direction u for a given 

b-value shell, TF
−1 f  is the inverse generalized Funk transform, S is the signal averaged 

over all diffusion encoding directions, b is the b-value, D0 is a chosen diffusivity scale, 

and k is a normalization constant.9,10 The generalized Funk transform and its inverse are 

both linear operators, and they are discussed in detail in Appendix B. Equation 1 presumes 

that the dMRI signal has the antipodal symmetry S( − u) = S(u), which is required for the 

inverse generalized Funk transform to exist. This is typically true for dMRI data to a 

good approximation,11 and in practice any departures from antipodal symmetry are easily 

removed in the preprocessing. In this work, we choose the normalization constant k so that

∫ dΩuF (u) = 1 . (2)

The derivation of Equation 1 assumes that axons can be idealized as thin, straight, 

impermeable cylinders and that the b-value is sufficiently high to suppress the signal 

from extra-axonal water relative to the signal from water in the more restricted intra-

axonal compartment. Additional requirements and support for the validity of Equation 1 

are discussed in prior work.6,9,10,12 In particular, the observed decrease of the direction-

averaged dMRI signal as 1/ b for high b-values provides strong corroboration of the thin 

cylinder approximation.9,12–14 Typically, the b-value should be about 4000 s/mm2 or larger 

for healthy, adult human brain when using 3 T scanners. Equation 1 is only applicable to 

white matter and likely quantifies the angular density of mainly myelinated axons.

Because of antipodal symmetry, the dMRI signal can be expanded solely in terms of even 

degree spherical harmonics as

S(u) = S0 ∑
l = 0

∞
∑

m = − 2l

2l
a2l

mY 2l
m(θ, φ), (3)

where (θ, φ) are the spherical angles for the direction vector u, Y1
m(θ, φ) is the spherical 

harmonic of degree l and order m, a2l
m are the expansion coefficients, and S0 is the signal 

when the b-value is set to zero. From Equations B5, 1, and 3, along with linearity of the 

generalized Funk transform, one then sees that

F (u) = ∑
l = 0

∞
∑

m = − 2l

2l
c2l

mY 2l
m(θ, φ), (4)
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where

c2l
m =

kS0a21
m

2Sλ2l bD0
(5)

with λ2l bD0  being an eigenvalue for the generalized Funk transform (see Appendix B for 

details). Equations 2–5, B6, and B10 imply

k = λ0 bD0
2π = erf bD0, (6)

where erf(x) is the error function.

The diffusivity scale D0 is an adjustable parameter, but should be chosen so that D0 ≥ Da, 

where Da is the intrinsic intra-axonal diffusivity.10 For D0, standard choices are either 

D0 = Da, which requires that a reliable estimate for Da be available, D0 = Df, where Df is 

the diffusivity of free water, or D0 = ∞. For D0 = ∞, the inverse generalized Funk transform 

reduces to the inverse of the classical Funk transform, as follows from Equation B3. For 

finite D0, the estimate of the fODF provided by Equation 1 becomes more accurate but 

also more sensitive to signal noise.9,10 However, for a fixed signal-to-noise ratio (SNR), the 

impact of the choice of D0 decreases as the b-value is increased. At a body temperature of 

37 C, we have Df ≈ 3.0 μm2/ms.15 The choice D0 = Da should theoretically give the best 

accuracy, but Da is difficult to measure with single diffusion encoding MRI.16 Thus the other 

choices may often be more convenient.

In white matter, Da ≈ 2.25 μm2/ms.17 Since FBI requires b≥ 4000 s/mm2, one would usually 

have bD0 ≥ 9. This implies

0.99998 ≈ erf(3) ≤ k ≤ erf(∞) = 1 . (7)

Therefore, in all cases of interest, the normalization constant k is very close to one.

2.2 | Angular resolution

For an experiment in which dMRI data are acquired on the b-value shell for N distinct 

diffusion encoding directions, only a finite number of terms in the signal expansion of 

Equation 3 can be accurately estimated. Therefore, this expansion is typically truncated as

S(u) = S0 ∑
l = 0

L
∑

m = − 2l

2l
a2l

mY 2l
m(θ, φ), (8)

where 2L is the maximum degree of the retained spherical harmonics. Because the signal is 

a real function, the expansion coefficients must have the property

a2l
−m = ( − 1)ma2l

m ∗ (9)
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with the asterisk indicating complex conjugation. This implies that, for each value of l in 

Equation 8, there are 4l+1 independent parameters to be calculated from the data. As the 

number of diffusion encoding directions should equal or exceed the number of independent 

parameters, one finds that N ≥ (L + 1)(2L + 1) ≡ N2L. Here we have defined N2L as the total 

number of independent parameters for the signal’s spherical harmonic expansion, which sets 

the minimum number of diffusion encoding directions needed to uniquely determine the 

expansion coefficients up to a degree 2L.

With FBI, the fODF is a linear transform of the signal. Hence, the spherical harmonic 

expansion of Equation 4 must be similarly truncated to

F (u) = ∑
l = 0

L
∑

m = − 2l

2l
c2l

mY 2l
m(θ, φ) . (10)

This restriction on the number terms that may be included in the fODF’s spherical harmonic 

representation means that its angular resolution, as estimated with FBI, is limited. To find 

a quantitative connection between angular resolution and the maximum degree 2L, we 

consider an fODF that is concentrated in the direction defined by θ = 0. The estimated fODF 

obtained from Equations 1 and 10 is

FPSF(u) = 1
4π ∑

1 = 0

L
(4l + 1)λ2l bDa

λ2l bD0
P2l(cosθ), (11)

where P1(x) is the Legendre polynomial of degree l; Equation 11 corresponds to the point 

spread function (PSF) for the degree 2L. This PSF is peaked near θ = 0 and θ =π, as 

illustrated by Figure S2 of the Supporting Information. The angular resolution for a degree 

2L may be defined as the full width at half the maximum of this central PSF peak. From 

Equation 11, we see that the angular resolution, α2L, can be determined from

2 ∑
I = 0

L
(4I + 1)λ2l bDa

λ2l bD0
P2l cosα2L

2 = ∑
l = 0

L
(4I + 1)λ2l bDa

λ2l bD0
. (12)

Numerical solutions to Equation 12 are given in Table 1 for D0 = Da and L = 1 to 10. Note 

that in this case the angular resolution is independent of both Da and b. One can also show 

that D0 = Da gives the best possible angular resolution for a given value of L and that this is 

well approximated by

α2L ≈ 3.13
N2L − 1 . (13)

Plots of α2L as a function of the b-value for D0 equal to Da, 3 μm2/ms (ie Df), and ∞ are 

shown in Figure 2 with L = 3 to 6. While the angular resolution for D0= 3 μm2/ms is close 

to that for D0 = Da, setting D0=∞ results in a substantially poorer resolution, especially for 

the lower b-values. For this reason, the choice D0=∞ is not recommended for high fidelity 
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fODFs. These plots are calculated using Da= 2.25 μm2/ms, which is a typical value for 

healthy white matter.17

2.3 | Sampling errors

If the number of diffusion encoding directions is set to the strict minimum value of N2L, 

then the computed fODFs will be prone to sampling errors due to aliasing, as is familiar 

in the context of Fourier transforms but also applies to spherical harmonic expansions.18,19 

Moreover, any aliasing errors that occur in the spherical harmonic expansion for the dMRI 

signal are amplified in the fODF through application of the inverse generalized Funk 

transform of Equation 1, which tends to increase the relative contribution of the higher 

degree terms. This is of particular importance in fODFs with sharp features since large 

angular frequencies are most susceptible to aliasing foldover (or wraparound) artifacts.

A standard procedure for reducing aliasing artifacts is to oversample the data. This creates a 

“guard band” in the frequency spectrum that serves to limit penetration of foldover artifacts 

into the calculated spectral range. For example, in MRI, the signal in the frequency encoding 

direction is routinely oversampled by a factor of 2 in order to decrease aliasing.20,21 The 

analogous degree of oversampling for spherical harmonics with antipodal symmetry would 

be to use N4L ≈ 4N2L diffusion encoding directions. In some contexts, using even more 

than 4N2L samples has been recommended to obtain reliable estimates of spherical harmonic 

expansion coefficients.22 While this would often be impractical for dMRI, oversampling 

by factors of 2 to 3 is feasible and can significantly attenuate sampling errors in fODF 

estimation.

Taking N = 300 as a practical upper limit on the number of diffusion encoding directions 

that can be conveniently obtained for in vivo human dMRI, oversampling by a factor of 3 

implies N2L ≲ 100. From Table 1, we see that this leads to 2L ≤ 12 and an angular resolution 

of no better than about 18.9°. While this may seem coarse, it is similar to the extent of 

axonal fanning found from histology in the corpus callosum,23 which has a relatively high 

diffusion anisotropy,24 and this resolution may therefore be sufficient to depict the main 

features of many fODFs.

2.4 | Diffusion weighting

In order to obtain high fidelity fODFs, a proper choice of b-value is essential. As previously 

mentioned, FBI generally requires b-values of about 4000 s/mm2 or higher in order to 

suppress the dMRI signal from extra-axonal water relative to that from intra-axonal water. 

The hallmark of a sufficiently high b-value is a scaling of the direction-averaged signal as 

1/ b, which is the experimental signature of diffusing spins confined to thin cylinders (eg 

axons). While 4000 s/mm2 is an approximate threshold at which this behavior becomes 

apparent, the ideal 1/ b power law decay is realized more accurately for b-values of 6000 

s/mm2 and higher.9,12,14 Therefore, if high fidelity fODFs are desired, b-values of 6000 s/ 

mm2 and above can be recommended for human dMRI at 3 T.

However, power law scaling of the direction-averaged signal eventually breaks down when 

the b-value is too high, at which point FBI is no longer a valid method. This is because 

Moss and Jensen Page 6

NMR Biomed. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the diffusion wave vector becomes large enough that the finite diameters of the axons 

begin to affect the dMRI signal substantially.25 From the theory of q-space imaging,26 the 

quantitative criterion for this is (in the short gradient pulse approximation)

d < 1
2q = π Δ

b , (14)

where d is the axon diameter, Δ is the diffusion time, and q = b/ 4π2Δ  is the wave vector 

amplitude. Equation 14 implies an upper bound on the diffusion weighting of

b < π2Δ
d2 . (15)

For d = 4 μm and Δ= 30 ms, this gives b < 18 500 s/mm2. Departures from the 1/ b
scaling have indeed been observed for b-values exceeding this limit25. For small axons, with 

d < Daδ, where δ is the gradient pulse duration, the short gradient pulse approximation may 

not apply, but in 11 this case motional narrowing makes detecting the effect of a finite axon 

diameter even more difficult than indicated by Equation 15.

Diffusion weighting also has a significant impact on noise artifacts for fODFs estimated with 

FBI. From the FBI noise theory derived by Jensen and coworkers,10 the noise variance of 

spherical harmonic expansion coefficient c2l
m scales with the b-value approximately as

var c2l
m ∝ b g0 bD0

g2l bD0

2
≈ bexp I(2l + 1)

bD0
, (16)

where we have used the approximation of Equation B9. This is a decreasing function of the 

b-value as long as

b < I(2l + 1)
D0

. (17)

With l = 4 and D0 = 3 μm2/ms, the inequality of Equation 17 yields b < 12 000 s/mm2. 

Thus, for D0 ≤ 3 μm2/ms, the noise variance of higher degree harmonics decreases up to 

rather large b-values. Since the higher degree harmonics contribute to the fine structure of 

the fODFs, using the largest feasible b-value can improve fidelity. An important caveat, 

however, is that the derivation of Equation 16 assumes that the echo time (TE) is fixed and 

the SNR is sufficiently high that rectified noise bias can be neglected. In practice, a larger 

b-value will typically necessitate a somewhat longer TE, resulting in stronger T2 signal 

decay and lower SNR. Nonetheless, a rule of thumb for achieving high fidelity fODFs with 

FBI on 3 T clinical scanners is to use the largest b-value for which the SNR is adequate to 

avoid sizable rectified noise bias. On clinical systems equipped with strong field gradients 

(ie ≳ 80 mT/m), the b-value range of 6000 to 12 000 s/mm2 would often be appropriate for 

voxel volumes of 20 to 30 mm3.
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2.5 | Local reference frame

If a global reference frame is used to represent the fODFs, it is difficult to compare the fine 

structure of two fODFs with different spatial orientations. This problem can be ameliorated 

by employing a local frame based solely on each fODF’s individual structure. To define a 

local reference frame for an fODF, we first introduce the symmetric tensor

A ≡ ∫ dΩuF (u)uu⊤ . (18)

This tensor has three orthogonal eigenvectors (e1, e2, e3) along with three associated 

eigenvalues (λ1, λ2, λ3). We assume that these are ordered so that λ1 ≥λ2 ≥λ3 and that 

the eigenvectors are normalized to unit magnitude. The tensor A is equal to the diffusion 

tensor for the intra-axonal compartment divided by Da and is sometimes referred to as the 

orientation or scatter matrix.6,27 The three eigenvectors of A provide the basis for a local 

reference frame for the fODF that is independent of the global reference frame. However, 

there are sign ambiguities in the definition of the eigenvectors, since an eigenvector 

multiplied by minus one is still an eigenvector with the same eigenvalue. Thus, three 

conditions on the eigenvectors must be imposed to uniquely specify the reference frame. For 

the first condition, we choose

∫ dΩuF (u) u ⋅ e2 u ⋅ e2 × e3
3 ≥ 0. (19)

The integral on the left-hand side of Equation 19 is an odd function of e3 but an even 

function of e2. Therefore, it fixes the sign of e3 except for the special case in which the 

integral exactly vanishes (which is unlikely to occur with real data). The integrand in 

Equation 19 has a function depending on the fourth power of the direction u, rather than the 

second power as in Equation 18, in order to have information independent of the tensor A. 

Similarly, our second condition is

∫ dΩuF (u) u ⋅ e3 u ⋅ e2 × e3
3 ≥ 0, (20)

which fixes the sign of e2. The final condition is

e1 ⋅ e2 × e3 > 0 (21)

and fixes the sign of e1. Equation 21 simply means that the eigenvectors define a right-

handed Cartesian coordinate system. Alternative conditions to resolve the eigenvector sign 

ambiguities are possible, but Equations 19–21 are among the simplest.In terms of the 

spherical harmonic expansion coefficients for the fODF, the tensor A is given explicitly by6
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A = 1
c0

0 30

30
3 c0

0 − 6
3 c2

0 + c2
2 + c2

−2 ic2
2 − ic2

−2 −c2
1 + c2

−1

ic2
2 − ic2

−2 30
3 c0

0 − 6
3 c2

0 − c2
2 − c2

−2 −ic2
1 − ic2

−1

−c2
1 + c2

−1 −ic2
1 − ic2

−1 30
3 c0

0 + 2 6
3 c2

0

.

(22)

This is automatically a real, symmetric matrix with a unit trace that can be diagonalized for 

each voxel to find the three local reference frame eigenvectors.

To plot two-dimensional fODF maps, it is convenient to employ local spherical angles 

defined by

u = e1cosθ + e2sinθcosφ + e3sinθsinφ . (23)

Azimuthal projection coordinates in the xy-plane are then given by x = r(θ)cosφ and 

y = r(θ)sinφ with the function r(θ) specifying the type of azimuthal projection. The choice 

r(θ) = θ corresponds to an equidistant azimuthal projection, the choice r(θ) = 2sin(θ/2)
corresponds to an equal-area azimuthal projection, and the choice r(θ) = 2tan(θ/2)
corresponds to a stereographic azimuthal projection.28 Because of antipodal symmetry, the 

fODF only need be plotted over the hemisphere defined by 0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ 2π in 

order to have a complete representation. Maps of fODFs will then appear in the xy-plane 

as disks with a radius of π/2 for the hemispheric equidistant azimuthal projection (HEAP) 

2 for hemispheric equal-area azimuthal projection, and 2 for the hemispheric stereographic 

azimuthal projection. The direction e corresponds to the central point θ= 0 and φ= 0, the 

direction e2 corresponds to the point θ=π/2 and φ= 0, and the direction e3 corresponds to the 

point θ=π/2 and φ=π/2. In this paper, we employ HEAP maps since they are among the best 

flat projections of a sphere for minimizing distortion errors.29,30

2.6 | Distance measure for fODFs

For quantitative comparison of fODFs, it is useful to employ a distance measure that 

reflects how similar two fODFs are. The mathematics literature offers many possibilities.31 

A familiar one is the Euclidian distance

dE ≡ ∫ dΩu F1(u) − F2(u) 2, (24)
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where F1(u) and F2(u) are two fODFs, each expressed in its own local frame of reference. 

Another attractive choice is the Matusita distance32

dM ≡ ∫ dΩu F1(u) − F2(u) 2, (25)

which has often been used in the context of probability densities. A potential advantage of 

the Matusita distance is that it is less strongly dominated by the largest fODF peaks than 

is the Euclidian distance and may thereby be more sensitive to differences in fine structure. 

In addition, the Matusita distance can never exceed 2, while the Euclidian distance is 

unbounded. The Matusita distance is closely related to the Bhattacharyya and Hellinger 

distances.31

For every type of distance, there is an associated anisotropy measure defined as the distance 

from an fODF with a constant value across all directions. For the normalization of Equation 

2, this constant value is 1/4π. The Matusita anisotropy axonal (MAA) is thus given by

MAA ≡ 1
2 ∫ dΩu F (u) − 1

4π
2
, (26)

where we have included a factor of 1/ 2 so that 0 ≤ MAA ≤ 1. An important distinction 

between anisotropies based on distance measures and the fractional anisotropy of the axonal 

compartment (FAA) is that the FAA only depends on the spherical expansion coefficients 

of degrees zero and two,6 but distance-based anisotropies generally depend on all of the 

expansion coefficients. For instance, if

F (u) = 1
4πY 0

0(θ, φ) + 7
18 πY 4

0(θ, φ), (27)

then FAA is zero but MAA ≈ 0.330245.

The physical meaning of MAA can be illustrated by considering an fODF that has a constant 

nonzero value over a surface area fraction κ and is zero otherwise. We then simply have

MAA = 1 − κ . (28)

Thus an fODF that is spread out over a large surface area has a low MAA while a sharply 

peaked fODF has a high MAA. Note that, for this example, the MAA is insensitive to the 

details of the shape of the surface area where the fODF is nonzero.

2.7 | Imaging

Three healthy volunteers were scanned with a 32 channel head coil on a 3 T Prismafit MRI 

scanner (Siemens Healthineers, Erlangen, Germany). The coil combine mode was set to 

adaptive combine for all diffusion sequences in order to minimize noise bias.33 All subjects 

gave informed consent under a protocol approved by the institutional review board of the 

Medical University of South Carolina.
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FBI data were acquired for three different b-value shells with b = 5000, 8000, and 10 

000 s/mm2 using a monopolar diffusion sequence and 256 uniformly distributed diffusion 

encoding directions on a half sphere. For each b-value shell, a total of 42 axial slices 

were obtained with a slice thickness of 3 mm, a field of view of 222 × 222 mm2, and an 

acquisition matrix of 74 × 74, thereby yielding 3 × 3 × 3 mm3 isotropic voxels. The parallel 

imaging and slice acceleration factors were both set to 2, and the bandwidth was set to 1536 

Hz/pixel. For the b = 5000 s/mm2 shell, the TE was 83 ms, the repetition time (TR) was 3500 

ms, the diffusion time (Δ) was 40.1 ms, and the diffusion pulse duration (δ) was 22.1 ms; 

for the b = 8000 s/mm2 shell, TE was 99 ms, TR was 3900 ms, Δ was 48.7 ms, and δ was 

30.1 ms; for the b = 10 000 s/mm2 shell, TE was 108 ms, TR was 4000 ms, Δ was 53.2 ms, 

and δ was 34.6 ms. For each b-value, a set of 10 b = 0 volumes was collected with matched 

imaging parameters, and one b = 0 volume was collected with the phase encoding direction 

reversed to facilitate corrections for susceptibility distortion. The entire acquisition for the b 
= 8000 s/mm2 shell was repeated within the same scan session to allow for assessment of 

reproducibility.

In order to identify white matter voxels, diffusional kurtosis imaging34,35 data were also 

acquired with the same monopolar diffusion sequence. The imaging parameters were 

identical to those for the FBI scan with b = 8000 s/mm2 except that b-values of 1000 

and 2000 s/mm2 were used along with 30 diffusion encoding directions for each of these two 

b-value shells.

To determine voxelwise estimates of the intra-axonal diffusivity Da, a previously described 

custom triple diffusion encoding (TDE) MRI pulse sequence was employed.36 The imaging 

parameters were matched to the b = 8000 s/mm2 FBI scan except that TE was 122 ms, Δ 

was 37.1, δ was 18.6 ms, the axial b-value was 4000 s/mm2, and the number of diffusion 

encoding directions was 64. TDE data were obtained with the radial gradients both switched 

on (radial b-value = 307 s/mm2) and switched off. As for the other diffusion scans, 10 

matched b = 0 volumes were collected along with a single reversed phase encoding b = 0 

volume.

2.8 | Data processing

Preprocessing of the dMRI data utilized a Python implementation (https://github.com/

m-ama/PyDesigner) of the DESIGNER pipeline.37 This included denoising with Rician 

bias correction,38 Gibbs ringing correction,39 susceptibility distortion correction,40 co-

registration,41 eddy current correction,41 and Gaussian smoothing with a full width at half 

maximum of 1.25 to further suppress the effects of noise and Gibbs ringing. This pipeline 

also calculated parametric maps of standard diffusion measures including the fractional 

anisotropy (FA) and mean kurtosis (MK).

Voxelwise maps for the intrinsic intra-axonal diffusivity, Da, were obtained from the TDE 

data using a previously described method.36,42 Specifically, we used the formula

Da = 1
b⊥

ln S1
S2

b∥
b∥ − b⊥

, (29)
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where bǁ is the axial b-value, b⊥ is the radial b-value, S1 is the direction-averaged TDE 

signal with the radial gradient switched off, and S2 is the direction-averaged TDE signal 

with the radial gradient switched on. The average Da values across all white matter voxels 

were found to be 2.14 ± 0.14 μm2/ms, 2.10 ± 0.21 μm2/ms, and 2.13 ± 0.17 μm2/ms, for 

Subjects 1, 2, and 3, respectively. White matter was defined as all voxels in the cerebrum 

with MK ≥ 1.43

The FBI data for each b-value shell were expanded in spherical harmonics using the method 

of least squares, and fODFs were determined for all white matter voxels by applying 

Equations 5 and 10 with L set to either 4, 5, or 6 and with D0 set to either Da, 3 μm2/ms, or 

∞. Because some fODFs calculated in this way take on unphysical negative values in some 

directions (due, for example, to Gibbs phenomena related to the truncation of the spherical 

harmonic expansion), all fODFs were rectified according to an optimized method.44 This 

method makes the fODFs nonnegative in way that minimizes the mean square difference 

between the original fODF, obtained from Equations 5 and 10, and the final rectified 

fODF. For this study, rectification was essential in order to calculate Matusita distances and 

anisotropies, since these necessitate taking the square root of the fODFs. However, the effect 

of rectification on most fODFs was minor.44 HEAP maps for fODFs in their local frames of 

reference were generated by applying Equations 19–23.

The MAA value for an fODF was calculated from Equation 26, while the FAA was obtained 

from6

FAA =
3∑m = − 2

2 c2
m 2

5 c2
0 2 + 2∑m = − 2

2 c2
m 2 . (30)

To find the Matusita distance, DM, between two fODFs, we used Equation 25 with the 

integral being evaluated numerically.

3 | RESULTS

The effect on fODF representations of rotating from the original laboratory frame of 

reference (global frame) to a local frame of reference based on the eigenvectors of the 

tensor A is illustrated in Figure 3. The leftmost column shows the HEAP maps in the global 

frame for fODFs from four different white matter voxels all taken from a single subject. The 

central column shows the same fODFs in the local frames. After the change in coordinates, 

the main weights of the fODFs are concentrated near the centers of the maps. The rightmost 

column shows the corresponding three-dimensional glyphs. The fODFs for the HEAP maps 

in this figure and those below were rescaled to have a maximum value of unity for the sake 

of visual clarity. However, for all quantitative calculations, the normalization of Equation 2 

was employed.

A comparison of fODFs from two different scans is shown in Figure 4 for the same four 

voxels as in Figure 3. For 2L = 8, a high degree of reproducibility is apparent and quantified 

by low Matusita distances between the two scans of 0.07 to 0.13. With an increased 
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maximum degree of spherical harmonic expansion the angular resolution improves, but the 

reproducibility is diminished, as reflected in the higher Matusita distances. For 2L = 10 the 

reproducibility is still good, with Matusita distances ranging from 0.16 to 0.21, but for 2L 
= 12 the Matusita distances vary from 0.36 to 0.45 in Voxel 4. This poorer reproducibility 

for 2L = 12 reflects the effects of signal noise on the higher degree harmonics that may be 

amplified by aliasing due to insufficient data sampling. Even with limited reproducibility, 

the FAA and MAA changed by at most a few percent across scans for all three choices of 

2L.

Distributions of voxelwise Matusita distances between fODFs obtained for the first and 

second scans with b = 8000 s/mm2 and D0 = Da for three subjects are given in Figure 

5. The distances become smaller with decreasing 2L. This is because decreasing 2L has 

a smoothing effect on the fODFs that suppresses the effects of signal noise. However, 

this same change also reduces the angular resolution of the fODFs. Thus, the choice of 

2L constitutes a compromise between precision and accuracy. The smoothing effect of 

decreasing 2L is illustrated in Figure 6 for a single voxel.

Also shown in Figure 6 is the smoothing effect of increasing D0, which is most apparent 

for 2L = 12. Supporting Figure S3 shows, for b = 8000 s/mm2, the distribution of Matusita 

distances between fODFs with D0 = Da and D0 = Df and between fODFs with D0 = Da and 

D0 =∞. The distances for the first difference are smaller than for the second, reflecting a 

better accuracy for D0 = Df in comparison with D0 =∞. The distances decrease when 2L is 

reduced, because of the aforementioned smoothing effect of lowering the maximum degree 

of the spherical harmonic expansion.

Figure 7 compares the fODFs for the same voxel as in Figure 6 for b-values of 5000, 8000, 

and 10 000 s/mm2. Note that the smoothing effect of increasing D0 is diminished for the 

larger b-values, as expected from the fact that the generalized Funk transform approaches 

the classical Funk transform in the limit that the control parameter S goes to infinity. 

Distribution of Matusita distances for the same three b-values for all white matter voxels 

from each of three subjects are given in Supporting Figure S4. As for Supporting Figure S3, 

the distances are between fODFs with D0 = Da and D0 = Df and between fODFs with D0 

= Da and D0 =∞. Note how the distribution plots shift to smaller values as the b-value is 

increased. Additional distribution plots are given in Supporting Figure S5, showing Matusita 

distances between fODFs with different b-values and with different values for 2L.

Maps for the three anisotropies FA, FAA, and MAA for a single anatomical slice from each 

of three subjects appear in Figure 8. While there are strong qualitative similarities, there 

are also clear differences that reflect the distinct information that each type of anisotropy 

provides. The traditional FA quantifies the anisotropy of the diffusion tensor of the full 

tissue, but the FAA quantifies the tensor anisotropy of just water confined to the intra-axonal 

compartment. The MAA is also specific to the intra-axonal water pool, but differs from the 

FAA in being sensitive to spherical harmonic components of the fODF with degrees greater 

than 2.
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Distribution plots for FA, FAA, and MAA for the three subjects are shown in Figure 9. The 

mean FA values are 0.43 ± 0.13, 0.43 ± 0.14, and 0.44 ± 0.14 for Subjects 1, 2, and 3, 

respectively; the mean FAA values are 0.54 ± 0.13, 0.54 ± 0.14, and 0.54 ± 0.14; the mean 

MAA values are 0.40 ± 0.07, 0.41 ± 0.07, and 0.41 ± 0.07. Pairwise correlation plots for 

the three anisotropies with data from three subjects are given in Figure 10. Note that FA and 

FAA are more strongly correlated with each other than either is with MAA. Nevertheless, 

the FAA and MAA are tightly correlated for FAA values above 0.8, which represent voxels 

with narrow distributions of axon directions.

An advantage of employing the local frame of reference for each fODF is that this facilitates 

comparison of fODFs across voxels. An example is provided in Figure 11, which shows 

average fODFs over all white matter voxels for 2L = 8,10,12 from each of three subjects. 

Across all three subjects, the full widths at half maximum for these averages in the 

horizontal direction are 47.8° ± 2.9° with 2L = 8, 43.5 ± 2.9 with 2L = 10, and 39.2 ± 

4.0 with 2L = 12, where we have indicated the intersubject standard deviations. These values 

are all larger than the angular resolutions listed in Table 1, reflecting dispersion of the 

intra-voxel axonal orientations. That the widths decrease with increasing 2L suggests that a 

significant fraction of fODFs have true widths smaller than the angular resolution for 2L = 

10 (ie 22°). As a second example, Figure 12 shows, for selected anatomical slices, maps of 

the Matusita distances between the fODFs from each voxel and the average fODF across the 

whole white matter. Large distances indicate white matter regions having atypical fODFs.

4 | DISCUSSION

The observation of large diffusion anisotropy in white matter was a watershed event in 

the history of dMRI.45,46 It has sparked several major developments in the field, such 

as diffusion tensor imaging47 and fiber tractography,48–50 and continues to be a topic of 

intensive study. With improving methods for analyzing and interpreting dMRI data, as 

well as better scanner technology, the ability to quantify diffusion anisotropy has steadily 

progressed. An important step was the introduction of fODF approaches which focus on the 

main source of diffusion anisotropy, namely water confined inside axons. These have proven 

valuable for both fiber tractography4 and microstructural modeling.5–8 Advancements in the 

measurement of fODFs now make it feasible to extract detailed information about fODF 

structure that go beyond identifying a few primary fiber bundle directions and supporting 

the calculation of compartmental diffusion parameters. However, systematic methods for 

exploiting this information are not currently well developed, which limits the application of 

fODF structure to the investigation and assessment of white matter disease.

This study has considered several issues that are relevant for the measurement and utilization 

of high fidelity fODFs, defined as representations with adequate resolution to capture the 

main angular variation of axonal fiber bundles and with minimal errors due to sampling 

and noise. First, we have discussed the relationship between the angular resolution of an 

fODF map, which is vital to properly interpret its physical meaning, and the number of 

terms included in its representation as a spherical harmonic expansion. We find that the 

achievable angular resolution improves approximately as the total number of terms raised 

to the negative one-half power, as expressed by Equation 13. Second, we have argued that 
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the number of diffusion encoding directions should be about 2–3 or more multiplied by 

the number of expansion terms, if substantial sampling errors are to be avoided. Third, we 

have noted, for FBI, that the noise variance of the higher spherical harmonic expansion 

coefficients decreases with increasing b-value up to a limit that grows quadratically with 

the harmonic degree for finite D0 (Equation 17). This favors larger b-values if one wishes 

to accurately depict fODF fine structure. Larger b-values are also beneficial in that they 

more fully suppress the confounding effect of signal from the extra-axonal compartment, as 

well as reducing the dependence of the fODF on the choice of the diffusivity scale D0. In 

practice, b-values in the range of 6000 to 12 000 s/mm2 are often appropriate for obtaining 

high fidelity fODFs when applying FBI to human data acquired on state-of-the-art clinical 

3 T scanners. The achievable interscan reproducibility of fODFs obtained with angular 

resolutions of 27° to 19° is illustrated in Figures 4 and 5 for a b-value of 8000 s/mm2. 

Fourth, in plotting fODFs, we have proposed using, as shown in Figure 3, local reference 

frames that are tied to each fODF’s individual structure rather than to a global reference 

frame. This allows fODF structure to be compared independently of spatial orientation. 

Finally, we have suggested that the Matusita distance and the associated MAA can be useful 

in quantifying subtle changes across subjects in fODF structure, which may be related to 

aging and disease.

While these issues have here all been discussed in the context of FBI, several of our 

conclusions apply also to other methods of fODF estimation. For example, some of our 

results for the angular resolution of fODF maps are also relevant to the constrained spherical 

deconvolution approach,51 and our proposals to use local reference frames and the Matusita 

distance are generally applicable. However, our analysis of the effects of signal noise is 

specific to FBI, since this depends on the details of the fODF calculation. Also, specific to 

FBI are considerations of the diffusivity scale D0. The standard choices for this parameter 

are Da, Df ≈ 3.0 μm2/ms, or ∞. For high fidelity fODFs, D0 = Da is preferred, but D0 = 

Df is also quite acceptable. On the other hand, setting D0 =∞ may cause significant fODF 

blurring, as illustrated in Figures 6 and 7.

An important observation of this study is that high fidelity fODFs obtained with even a 

modest amount of oversampling require the use of a relatively large number of diffusion 

encoding directions. For example, with an oversampling factor of 3, Table 1 implies that 84 

directions are sufficient for an angular resolution of about 34°, 135 directions are sufficient 

for a resolution of about 27°, 198 directions are sufficient for a resolution of about 22°, and 

273 directions are sufficient for a resolution of about 19°. Since the angular spread of axonal 

fiber bundles can be as low as 18°,23 fewer than 84 diffusion encoding directions is likely 

inadequate to achieve a high fidelity representation of the fODF throughout white matter.

The angular resolution determines the ability to resolve distinct peaks of a given fODF, 

which typically requires a resolution that is smaller than the angle of separation and is 

relevant to fiber tractography in white matter regions with intersecting fiber bundles. The 

angular resolution also sets the minimum amount of axonal dispersion (ie fanning) that 

can be quantified and is important for delineation of peak shape. It should be emphasized, 

however, that the accuracy of the fODF peak directions may be substantially better than the 

angular resolution, allowing white matter fiber tractography to be successfully performed 
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with fewer directions than are needed for high fidelity fODFs. In particular, the estimated 

peak direction for a single axially symmetric fiber bundle is independent of the fODF 

angular resolution, so a low resolution is adequate for fiber tractography in such cases.

An advantage of high fidelity fODFs is that they support a more refined notion of axon 

orientation anisotropy. Conventionally, diffusion anisotropy is quantified with the FA, but 

this reflects anisotropy of both the intra-axonal and extra-axonal spaces. The FAA is specific 

to axons, but it is only sensitive to spherical harmonics up to degrees of 2L = 2 and therefore 

does not reflect the fine details of fODFs captured in the higher harmonics. For this reason, 

we have introduced the MAA, which is both specific to axons and sensitive to harmonics 

of all degrees. Although we have found a strong correlation between the FAA and MAA of 

about r = 0.83 for healthy white matter (Figure 10), the fraction of the variance in MAA 

that is unexplained by the FAA is still over 30%. Equation 27 gives a specific example of a 

simple fODF where the FAA and MAA are markedly different.

A summary of the effects of adjusting the main parameters that impact fODF quality along 

with specific recommendations is given in Table 2. The recommendations are appropriate 

for 3 T clinical MRI in healthy adult subjects. There is currently little information on 

the validity and application of FBI for young children and for adults with severe brain 

pathology, and caution is advised when using FBI with these groups. The feasibility of 

the recommended parameter choices may depend on the available scanner hardware and 

software.

Most of the prior literature on fODFs has focused on obtaining the peak directions with 

little consideration of fODF fine structure. This is partly because of the strong interest in 

fiber tractography, but may also reflect an appreciation that typical dMRI scans have too 

few diffusion encoding directions and too low b-values to support the calculation of high 

fidelity fODFs. However, recent improvements in scanner hardware, scanner software, and 

data preprocessing techniques have made it much more practical to increase the number 

of directions and b-value to an extent sufficient to achieve high fidelity. In particular, MRI 

systems with maximum magnetic field gradient amplitudes of 80 mT/m allow high b-value 

data to be obtained in white matter with good SNR,9 pulse sequences with simultaneous 

multislice capability can accelerate data acquisition by factors of 2 to 4,52 and advanced 

denoising techniques can substantially improve data quality.38 These innovations provide 

exciting opportunities for exploring how the fine structure of fODFs is altered by disease 

and aging. In order to support future work in this direction, we have discussed, in this 

paper, general conceptual issues relevant to constructing and applying high fidelity fODF 

representations and provided several examples obtained with FBI.

5 | CONCLUSION

We have demonstrated how to construct high fidelity fODFs in white matter with FBI. In 

particular, conditions have been derived for guiding the choices of the number of diffusion 

encoding directions and the b-value. The number of directions should be sufficient to 

mitigate sampling errors, while increasing the diffusion weighting can be beneficial for 

improving fODF accuracy as long as adequate SNR can be maintained. In order to facilitate 
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the comparison of fODFs across voxels, a local frame of reference has been introduced so 

that differences in fODF structure can be assessed independently of spatial orientation. The 

MAA is proposed as a means of quantifying angular variability of individual fODFs that is 

more sensitive to the finer structural details than established indices of anisotropy.
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APPENDIX

APPENDIX

APPENDIX A: DEFINITION OF FODF

To give a mathematical definition of the fODF for a given voxel, we first introduce a 

function h(r) that is unity for all positions r inside the voxel and vanishes for all positions 

outside the voxel. We also assume that the geometry of the ith axon’s track is well described 

by a principal curve R(i)(τ) that is parametrized by its arc length τ. While there are several 

methods of constructing principal curves,53,54 one expects these to yield similar paths for 

thin, tubular objects such as axons. The tangent vector for the ith axon at τ is then

T(i)(τ) = d
dτ R(i)(τ) . (A1)

By construction, T(i)(τ) = 1. Let us also define V (i) τ, τO  as the volume of the ith axon 

contained between the point τ and some initial point τ0.Here the axonal volume only refers 

to space contained inside the axolemma and excludes the surrounding myelin sheath.

In terms of the axon principal curves, the fODF may be expressed as

F (u) = 1
2πV a

∑
i
∫ dτ dV(i) τ, τ0

dτ ℎ R(i)(τ)

δ u ⋅ T(i)(τ) − 1 + δ u ⋅ T(i)(τ) + 1 ,
(A2)

where δ(x) is the Dirac delta function,

V a ≡ ∑
i
∫ dτ dV (i) τ, τ0

dτ ℎ R(i)(τ) (A3)
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is the total axonal volume within the voxel, and with the summations in Equations A2 

and A3 being taken over all axons that intersect the voxel. The argument u of the fODF 

is restricted to be a unit vector so that ǀuǀ = 1. One may confirm that Equation A2 is 

consistent with the normalization of Equation 2 and with the antipodal symmetry F(−u) = 

F(u). Including the axonal volume derivatives in Equations A2 and A3 is necessary for the 

contribution of each axon to the fODF to be proportional to its volume fraction. The initial 

point τ0 is arbitrary and does not affect F(u) since a change in τ0 just shifts V (i) τ, τ0  by a 

constant that is independent of τ. The right-hand side of Equation A2 can be interpreted as 

the volume-weighted density of local tangents to the fibers’ principal curves.

Since Equation A2 involves only morphological properties of axons, the fODF constitutes 

a physical property of neuronal cytoarchitecture. It could, in principle, be calculated from 

three-dimensional white matter histology,55 although care should be taken that the fixation 

process does not excessively alter the axon shape.56 As previously mentioned, there is 

still an unresolved question as to whether the fODF, as estimated with FBI, reflects only 

myelinated axons or both myelinated and unmyelinated axons.

A special case of interest is when all the axons are perfectly straight within the voxel. Then 

the tangent vectors are independent of τ, and Equation A2 simplifies to

F (u) = 1
2πV a

∑
i

V a
(i) δ u ⋅ T(i) − 1 + δ u ⋅ T(i) + 1 , (A4)

where V a
(i) is the volume for the ith axon within the voxel. Equation A4 simply gives the 

volume-weighted angular density of axon orientations. Although Equation A2 corresponds 

to a conventional notion of an fODF in the context of dMRI, alternative definitions are 

possible. For example, by including information related to the axon curvature, “asymmetric 

fiber orientation distributions” may be defined.57 The results of this paper are not relevant in 

such cases and apply only to fODFs consistent with Equation A2.

APPENDIX B: GENERALIZED FUNK TRANSFORM

The classical Funk transform is a linear map of a function f defined on the surface of a unit 

sphere to another function TF{f} also defined on a unit sphere.58–60 It is given explicitly by

TF f (u) ≡ ∫ dΩnf(n)δ(u ⋅ n), (B1)

where u and n are unit vectors, δ(x) is the Dirac delta function, and the integral is taken 

over the entire surface of the unit sphere. Because of the delta function, the surface integral 

in Equation B1 reduces to a line integral for each direction u around a corresponding great 

circle of points orthogonal to u. The Funk transform was first applied to dMRI in the context 

of q-ball imaging.61 It is sometimes referred to as the Funk-Radon transform because 

of its close connection to the Radon transform, which plays a central role in computed 

tomography.62

For FBI, one defines a generalized Funk transform as
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T F f (u, s) ≡ s
π∫ dΩnf(n)e−s(u ⋅ n)2, (B2)

where S is an added control parameter that can be set to any positive value. One may show 

that

lim
s ∞

T F f (u, s) = TF f (u), (B3)

so the generalized Funk transform reduces to the classical Funk transform for large s.10 

Roughly speaking, the generalized Funk transform can be thought of as a classical Funk 

transform where the line integral around the great circle has been replaced by an integral 

over a band with a width scaling as 1/ s.

A crucial property of the generalized Funk transform is that the spherical harmonics are its 

eigenfunctions so that

T F YI
m (u, s) = λ1(s)YI

m(θ, φ), (B4)

where (θ, φ) are the spherical angles for the direction vector u, Y I
m(θ, φ) is the spherical 

harmonic of degree l and order m, and λ1(s) is the eigenvalue. For odd integer degrees, 

the eigenvalues vanish, so these spherical harmonics are in the null space of T F . For 

even integer degrees, the eigenvalues are nonzero, allowing the inverse generalized Funk 

transform to be calculated as

TF
−1 Y2l

m , u = 1
λ2I(s)

Y2l
m(θ, φ) . (B5)

The even degree eigenvalues have the explicit formula

λ2l(s) = 2πP2l(0)g2l(s), (B6)

where Pl(x) is the Legendre polynomial of degree l, and

gl(s) = s(l + 1)/2
Γ 1

2 + 1

Γ I + 3
2

1F1
1
2 + 1

2; I + 3
2; − s (B7)

with Γ (x) being the gamma function and 1F1(a; c; x) being the confluent hypergeometric 

function of the first kind.10 As S approaches infinity, the function gl(s) approaches unity. 

Thus we have the limit

lim
s ∞

λ2l(s) = 2πP2l(0) . (B8)
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A useful approximation is10

g1(s) ≈ exp − I(I + 1)
4s . (B9)

We also have the special case

g0(s) = erf( s) . (B10)

Plots of λ2I(s) for several values of l are given by Figure S1 of the Supporting Information.

Abbreviations:

dMRI diffusion MRI

FA fractional anisotropy

FAA fractional anisotropy axonal

FBI fiber ball imaging

fODF fiber orientation density function

HEAP hemispheric equidistant azimuthal projection

MAA Matusita anisotropy axonal

MK mean kurtosis

PSF point spread function

SNR signal-to-noise ratio

TDE triple diffusion encoding

TE echo time

TR repetition time
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FIGURE 1. 
The fODF gives the probability of an intra-axonal water molecule being located inside an 

axon oriented in a given direction. In the schematic diagram, the axoplasm is shown in blue, 

the myelin sheaths are shown in brown, and the extra-axonal space is shown in yellow. The 

directions of the axons are indicated by the arrows. By convention, the fODF is defined to 

have antipodal symmetry so that it is unchanged if the directions are rotated by 180°
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FIGURE 2. 
The angular resolution α2L as function of the b-value (b) for D0 = Da (blue lines), D0 = 

3 μm2/ms (green lines), D0 =∞ (red lines) with 2L= 6, 8, 10, 12. For D0 = Da, α2L is 

independent of b and decreases with increasing 2L. For D0 > Da, α2L decreases both with 

increasing b and with increasing 2L. The angular resolutions for D0 = Da and D0 = 3 μm2/ms 

are similar, but the resolution for D0 =∞ is substantially worse, especially for the lower 

b-values and higher 2L-values. The plots for D0 = 3 μm2/ms and D0 =∞ are calculated 

using Da = 2.25 μm2/ms; the plots for D0 = Da are independent of the value of Da and are 

consistent with Table 1
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FIGURE 3. 
The leftmost column shows HEAP maps for fODFs from four different white matter 

voxels from a single subject as they appear in a global reference frame defined by the 

laboratory coordinate system. The center column shows the same fODFs rotated to their 

individual local reference frames. In the local frames, the main weights of the fODFs are 

concentrated near the centers of the maps. The rightmost column shows the corresponding 

three-dimensional glyphs that are commonly used to depict fODFs. All fODFs are obtained 

from dMRI data with b = 8000 s/ mm2 and are calculated with 2L = 10 and D0 = Da. For 
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display purposes, the fODFs in the HEAP maps have all been individually rescaled to have 

a maximum value of unity. The distance from the center of each map reflects the polar angle 

θ while the azimuthal angle φ increases clockwise starting from 0 in the positive horizontal 

direction. The polar angle is restricted to the range 0 to π/2, and the azimuthal angle varies 

from 0 to 2π
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FIGURE 4. 
Reproducibility of fODFs across two different scans for the same voxels as in Figure 3 with 

b = 8000 s/mm2, D0 = Da, and 2L = 8,10,12. The FAA and MAA are indicated for each 

fODF along with the Matusita distance (DM) between the first and second scans. The FAA 

and MAA are quite similar for both scans, but there is a non-negligible Matusita distance 

(DM) that increases with 2L. A lower 2L results in more reproducible fODFs but at the 

price of a worse angular resolution and sensitivity to fODF fine structure. Note that one can 

discern two peaks at the center of Voxel 3 for 2L = 12 that are merged into a single peak for 

2L = 8. All maps are constructed using the fODFs’ local frames of reference
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FIGURE 5. 
Distribution plots of DM values between the first and second FBI scans with b = 8000 s/mm2 

and D0 = Da across all white matter voxels from three subjects. The DM values increase with 

increasing 2L since the inclusion of higher harmonic degrees amplifies the sensitivity of the 

fODFs to signal noise. The plots are constructed using 100 bins over the full range of 0 to 2
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FIGURE 6. 
Comparison of fODFs from a single voxel calculated with D0 set to Da, Df (3 μm2/ms), 

or ∞, for b = 8000 s/mm2 and 2L = 8,10,12. The Matusita distances for D0 = Df and 

D0 =∞ are relative to the fODFs with D0 = Da and the same 2L values. The choice of 

D0 = Df causes a slight blurring of the fODF in comparison to D0 = Da, which becomes 

more pronounced as 2L is increased and is reflected in DM. The FAA and MAA values are 

only slightly affected. In contrast, use of D0 =∞ has more sizable effects that noticeably 

degrade fODF fidelity, particularly for 2L = 12. In general, setting D0 = Da should give 

more accurate fODFs, but when Da values are not available D0 = Df provides a satisfactory 

alternative
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FIGURE 7. 
Comparison of fODFs from a single voxel calculated with D0 set to Da, Df, or ∞, for 2L 
= 10 and b = 5000, 8000, and 10 000 s/ mm2. The Matusita distances for D0 = Df and D0 

=∞ are relative to the fODFs with D0 = Da and the same b-values. The impact of the choice 

of D0 diminishes with increasing b-value as reflected in the DM values. The FAA and MAA 

values are only slightly changed as the b-value is increased, with the biggest effect being 

seen for D0 =∞
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FIGURE 8. 
FA, FAA, and MAA maps for a single anatomical slice from each of three subjects. The 

FA maps are derived from diffusional kurtosis imaging data. The FAA and MAA maps are 

calculated from fODFs using 2L = 10 and D0 = Da for dMRI data acquired with b = 8000 

s/ mm2. Since the FAA and MAA are only meaningful in white matter, only white matter 

voxels are shown in color for the maps of these two parameters. While all three anisotropies 

share qualitative features, they quantify different aspects of diffusion anisotropy. Both the 
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FAA and MAA are specific to the intra-axonal water pool, but the FA reflects the aggregate 

anisotropy of both intra-axonal and extra-axonal water
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FIGURE 9. 
Distribution of FA, FAA, and MAA across all white matter voxels for each of three subjects. 

Both FAA and MAA are determined using 2L = 10 and D0 = Da for data obtained with b = 

8000 s/mm2. The MAA distribution is more sharply peaked than either the FA or FAA. The 

plots are constructed using 100 bins over the full range of 0 to 1
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FIGURE 10. 
Correlations between FA, FAA, and MAA across all white matter voxels from three subjects. 

All the correlation coefficients (r) are high, but MAA is less strongly correlated with either 

FA and FAA than is FAA with FA. However, in the rightmost column, MAA and FAA 

appear to be very highly correlated for FAA values above 0.8, which correspond to voxels 

where axons are mainly oriented in similar directions. Both FAA and MAA are for 2L = 10, 

D0 = Da, and b = 8000 s/mm2
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FIGURE 11. 
Average of fODFs over all white matter voxels for each of three subjects. The averages 

are calculated using the fODFs’ local frames of reference in order to remove the effect of 

relative spatial orientation in the laboratory frame. The b-value is 8000 s/mm2, D0 is set to 

Da, and 2L is set to 8, 10, and 12. Note that the FAA decreases slightly with increasing 2L 
while the MAA becomes larger
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FIGURE 12. 
Maps of the Matusita distance between fODFs in each white matter voxel and the average 

fODF for selected slices from three subjects with white matter shown in color. The b-value 

is 8000 s/mm2, D0 is set to Da, and 2L is set to 10. The distances are for the local reference 

frames, with the average fODFs being determined separately for each subject using all white 

matter voxels from the entire cerebrum. Relatively large differences are apparent in the genu 

and splenium of the corpus callosum, showing that these regions have atypical fODFs
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TABLE 1

Ideal angular resolution α2L for the fODF represented as a spherical harmonic expansion with a maximum 

degree 2L. N2L is the number of terms in the expansion, which gives the minimum number of distinct 

diffusion encoding directions needed to uniquely determine the expansion coefficients with FBI. The 

calculations using Equation 12 assume D0 = Da and correspond to the best achievable resolution for a given 

choice of 2L

2L N 2L α2L (°) (Equation 12) α2L (°) (Equation 13)

2 6 78.46 80.20

4 15 47.58 47.93

6 28 34.40 34.51

8 45 26.99 27.04

10 66 22.22 22.24

12 91 18.90 18.90

14 120 16.44 16.44

16 153 14.55 14.55

18 190 13.05 13.04

20 231 11.83 11.83
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TABLE 2

Summary of the effects of altering the diffusivity scale D0, the maximum spherical harmonic expansion degree 

2L, the number of diffusion directions N, and the diffusion weighting b. Adjusting each parameter may have 

both beneficial and deleterious effects. An imaging protocol and data analysis optimized for high fidelity 

fODFs requires careful balancing of these various factors. Beneficial effects are underlined.Recommended 

values are listed in parentheses and are appropriate for high fidelity fODFs on clinical 3 T scanners

Parameter Effects of increasing Effects of decreasing

D0 (Da or 3 μm2/ms) Smooths fODF; reduces sensitivity to signal noise 
and sampling errors

Increases fODF accuracy and improves angular resolution 
as long as D0≥ Da; increases sensitivity to signal noise and 
sampling errors

2L (8, 10, or 12) Improves angular resolution; increases sensitivity to 
signal noise and sampling errors

Smooths fODF; reduces sensitivity to signal noise and 
sampling errors

N (2 to 3 times N2L) Increases image acquisition time; reduces sensitivity 
to signal noise and sampling errors

Reduces image acquisition time; increases sensitivity to 
signal noise and sampling errors

b (6000 to12000 s/mm2) Improves fODF accuracy by suppressing dMRI 
signal from extra-axonal water; increases precision 
with which higher degree spherical harmonic 
coefficients can be estimated; reduces sensitivity 
to choice of D0; decreases SNR; increases image 
acquisition time

Lowers fODF accuracy by increasing contribution to dMRI 
signal from extra-axonal water; decreases precision with 
which higher degree spherical harmonic coefficients can be 
estimated; increases sensitivity to choice of D0; increases 
SNR; decreases image acquisition time

NMR Biomed. Author manuscript; available in PMC 2022 March 14.


	Abstract
	INTRODUCTION
	METHODS
	Fiber ball imaging
	Angular resolution
	Sampling errors
	Diffusion weighting
	Local reference frame
	Distance measure for fODFs
	Imaging
	Data processing

	RESULTS
	DISCUSSION
	CONCLUSION
	APPENDIX
	References
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4
	FIGURE 5
	FIGURE 6
	FIGURE 7
	FIGURE 8
	FIGURE 9
	FIGURE 10
	FIGURE 11
	FIGURE 12
	TABLE 1
	TABLE 2

